Richard F. H elm, ${ }^{*, a}$ M erja Toikka, ${ }^{\text {b }}$ Kaichang L i^{a} and G östa Brunow ${ }^{\text {b }}$
${ }^{\text {a }}$ F ralin Biotechnology C enter, Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State U niversity, Blacksburg, VA 24061-0346, U SA
${ }^{\mathrm{b}}$ D epartment of Chemistry, U niversity of H elsinki, PO B ox 55, FIN-00014, H elsinki, Finland

Abstract

Synthetic protocols for the preparation of the 3-hydroxy-3-(4-hydroxy-3-methoxyphenyl)-2-(2methoxyphenoxy) propyl $\beta-\mathrm{D}$-glucopyranosides and corresponding xylopyranosides have been developed. G lycosylation of racemic 1-(4-benzyloxy-3-methoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propanone with the per-benzoylated pyranosyl bromides of D -glucose and D -xylose affords diastereomeric mixtures of the β-glycosides in up to 92% yield. Stereoselective reduction of the benzoyl ketone with $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ gives the protected erythro diastereomers ($2 R, 3 S$ and $2 S, 3 R$) of 3-hydroxy-3-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propyl β-D-gluco- and -xylo-pyranosides. Reduction with (+)- or (-)-D IP chloride affords the protected threo diastereomers ($2 \mathrm{~S}, 3 \mathrm{~S}$ and 2R ,3R) without any significant enantioselectivity. D eprotection then gives the desired lignin dimer glycosides. The use of the pyranoside to provide diastereomers leads to the enrichment (> $\mathbf{9 0 \%}$) of several individual enantiomers using silica gel chromatography, and also allows the rapid assessment of enantiomeric purity by ${ }^{1} \mathrm{H}$ N M R spectroscopy.

Introduction

The level to which the matrix polymers of the woody cell wall interact with one another is poorly understood. At present, it is impossible to isolate lignin free of carbohydrates and hemicelluloses free of lignin. This phenomenon is the basis upon which the general hypothesis has developed that cellulose is hydrogen-bonded to hemicelluloses, and the hemicelluloses are covalently attached to lignin. ${ }^{1}$ It is through these interactions that woody cell walls are thought to obtain their high mechanical strength and resistance to rapid biodegradation. ${ }^{2}$
It has been further suggested that the predominant mode of covalent attachment of hemicelluloses to lignin is through the benzylic position of guaiacylglycerol β-guaiacyl ethers. ${ }^{3,4}$ This is thought to be brought about by random nucleophilic attack of the intermediate quinone methide formed during lignin biosynthesis. As the lignin metabolic pathway is energetically expensive, and the linkage of hemicelluloses to lignin is thought to be essential for the chemical and physical behaviour of the cell wall, an argument could be put forward that the formation of this bond may be accomplished with a higher level of control than random attack. ${ }^{5}$ In support of this claim, the recent work on forage cell walls has highlighted the biological control associated with the incorporation of phenolic acids into the lignin macromolecule in corn. ${ }^{6}$ If there is some level of biological control exerted on the formation of lignin-hemicellulose covalent bonds, then it follows that there are sites for attachment other than the benzylic position.
One such possibility is the glycosidic linkage of hemicelluloses through the reducing end to the primary position of the arylpropane side chain. Indeed, cis-isoconiferin has been detected in the bark of European beech (F agus sylvatica). ${ }^{7}$ It is also important to note that there are several unassigned correlations in 2D heteronuclear multiple quantum-filtered coherence (H M QC) and 2D heteronuclear multiple bond coherence ($\mathrm{H} M \mathrm{BC}$) spectra of native lignins and lignin-carbohydrate complexes. ${ }^{8}$ U nambiguous assignment of these correlations can only come about through the preparation and N M R characterization of accurate model compounds. The recent identification of a new lignin structure through the use of model compounds
and NMR spectroscopy ${ }^{9}$ highlights the importance of this approach in ascertaining cell wall structural aspects, and makes this foray into the synthesis and characterization of lignin glycosides worthwhile.

Results and discussion

The lignin precursor was prepared by a standard route, ${ }^{10}$ namely benzylation of acetovanillone 1, bromination, and coupling with guaiacol. Subsequent hydroxymethylation leads to a racemic mixture of 1-(4-benzyloxy-3-methoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propanone (2, 65\% overall). The glycosyl bromides 5 and $\mathbf{6}$ were prepared by per-benzoylation of the glycose, followed by treatment with $\mathrm{HBr}(90 \%$ overall). ${ }^{11}$ The crystalline bromides 5 and 6 were stable as long as they were stored desiccated in the freezer.
Several modifications of the silver triflate-based (A gOTf) glycosylation strategy were performed to optimize the reaction of the alcohol 2 with bromides 5 and 6. This strategy, when utilized with an acylated glycosyl bromide, favours β glycosidation. A standard AgOTf glycosylation with 2,4,6trimethylpyridine (collidine), molecular sieves and the peracetylated glucosyl bromide was not highly successful. M odification of the reaction system by use of the per-benzoylated glucosyl bromide increased yields significantly. Subsequently it was determined that performing the glycosylation with the benzoylated glucosyl bromide but without the acid scavenger (collidine) afforded the glycosides (7 and 8) in up to 92% yield (Scheme 1).
NMR spectra of products 7 and 8 indicate a mixture of epimers, both of which contained a β-glycosidic linkage. The presence of epimers is due to the placement of the optically active carbohydrate on alcohol 2, a molecule with a chiral centre at the 2 -position of the propyl side chain. Brief attempts were made at resolution of this mixture by flash chromatography, but without success. Stereoselective reduction was then performed to produce the enriched threo and erythro diastereomers. It has recently been shown that molecules such as these can be reduced to afford high erythroselectivity with $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}{ }^{12}$ This methodology was used to produce the erythro diastereomers (92:8 erythro:threo) of

Scheme 1 Protocol for the preparation of the protected glycosides of racemic 1-(4-benzyloxy-3-methoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propanone 2. Reagent: i, A gOTf, $4 \AA$ molecular sieves.

	R^{1}	R^{2}	R^{3}	R^{4}
$\mathbf{9}$	Bz	$\mathrm{CH}_{2} \mathrm{OBz}$	H	Bn
$\mathbf{1 0}$	H	$\mathrm{CH}_{2} \mathrm{OH}$	H	Bn
$\mathbf{1 1}$	H	$\mathrm{CH}_{2} \mathrm{OH}$	H	H
$\mathbf{1 2}$	Ac	$\mathrm{CH}_{2} \mathrm{OAc}$	Ac	Ac
$\mathbf{1 3}$	Bz	H	H	Bn
$\mathbf{1 4}$	H	H	H	Bn
$\mathbf{1 5}$	H	H	H	H
$\mathbf{1 6}$	Ac	H	Ac	Ac

Scheme 2 Reduction and deprotection of the lignin glycoside model compounds. Reagents: i, DIP-CI; ii, $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$.
compounds $\mathbf{9}$ and $\mathbf{1 3}$ in $\mathbf{9 0 \%}$ yield (Scheme 2). Removal of the benzoate groups with sodium methoxide in MeOH gave the erythro diastereomers of compounds 10 and 14 , which upon debenzylation gave the desired erythro models 11 and 15. Cleavage of the glucopyranosyl substituent of compound 11 with β glucosidase gave the known erythro lignin model dimer, and acetylation of compounds $\mathbf{1 1}$ and $\mathbf{1 5}$ gave the per-acetates $\mathbf{1 2}$ and 16 , respectively.

Formation of the threo diastereomers was accomplished by reduction of the benzoyl ketone with (+)- or (- -diisopinocampheylchloroborane (DIP chloride ${ }^{\text {TM }}$, Scheme 2). . ${ }^{13,14}$ These reagents have been reported to provide enantioselective reductions for numerous ketones. However, in the cases of compounds $\mathbf{7}$ and $\mathbf{8}$, both threo epimers were formed in equal amounts. A ssuming the stereoselectivity of the reduction is controlled by the 2-aryloxy substituent, an enantioselective reduction of epimeric compound 7 or $\mathbf{8}$ would provide one threo and one erythro isomer, depending on which chiral reductant was used. However, the reduction must be somewhat more complicated than this scenario, as either reductant afforded both threo isomers. The same deprotection steps used for the erythro isomers gave the threo isomers of compounds $\mathbf{1 0 - 1 2}$ and 14-16.

The glycosides formed by the attachment to the racemic lignin model provided a convenient method for ascertaining enantiomeric ratios using the most inexpensive and abundant chiral reagents available in nature - carbohydrates. ${ }^{15}$ Signal separation in the ${ }^{1} \mathrm{H}$ NMR spectra of several protons allowed for rapid assessment of enantiomeric purity (Fig. 1), and in some cases signal separation in the ${ }^{13} \mathrm{C}$ spectra was on the order of 1 ppm. The use of carbohydrates also allowed for attempted separations of these models using conventional chromatography

Fig. $1{ }^{1} \mathrm{H}$ N M R spectra of the benzylic proton region of the diastereomers of compound 12 initially enriched by different reduction methods. $\mathrm{A}, \mathrm{NaBH}_{4} ; \mathrm{B}$ and $\mathrm{C}:(+)-\mathrm{DIP}-\mathrm{Cl}$ and preparative TLC (PLC) of the per-acetates; D and $\mathrm{E}, \mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ and PLC of the per-acetates.
systems, i.e., reversed-phase HPLC and silica gel chromatography. A s exemplified in Fig. 1, we have been ableto separate the lignin-glycoside per-acetates 12 using conventional preparative TLC (silica gel). A relatively non-selective reduction of compound $\mathbf{7}$ with NaBH_{4} with subsequent deprotection and
per-acetylation afforded a mixture of the 4 diastereomers (spectrum A). A pplying the same sequence with different reductants afforded enriched mixtures of the threo and erythro diastereomeric per-acetates which were further purified by preparativeTLC (spectra B-E).

In summary, the preparation and characterization of lignin model enantiomers and their glycosides may eventually help to unravel the complex issues surrounding the biosynthesis and biodegradation ${ }^{16}$ of lignin, lignans and neolignans. Carbohydrates may also, in some cases, provide a simple method for generating diastereomers from mixtures of optical isomers These diastereomers can be separated by conventional means, with later use of β-glucosidase to selectively remove the glycoside. Carbohydrates can also simply be used for assessing enantiomeric excess.

Experimental

General

NMR spectra were recorded in $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone with the central solvent peak serving as the internal reference ($\delta_{\mathrm{H}} 2.04, \delta_{\mathrm{C}} 29.8$), with 200,400 or 500 M Hz instruments; J -values are given in Hz . M ass spectra were run on a JEOL JM S-SX 102 instrument. Optical rotations were recorded at ambient temperature on a Perkin-Elmer M odel 141 polarimeter; [$a]_{\mathrm{D}}$-values are given in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. All reactions were performed under an atmosphere of dry nitrogen. Crystalline hydroxy ketone 2 was prepared by established procedures, ${ }^{10,17}$ and the benzoylated pyranosyl bromides ($\mathbf{5}$ and $\mathbf{6}$) were prepared essentially by the method of F letcher. ${ }^{11}$ Reactions were performed separately subsequent to the stereoselective reductions (i.e., $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ vs. DIP-CI) for the threo and erythro isomers, and yields were independent of starting isomer

G lycosylations

Racemic compound 2 ($537 \mathrm{mg}, 1.31 \mathrm{mmol}$) was dissolved in methylene dichloride ($20 \mathrm{~cm}^{3}$, distilled from CaH_{2}). Powdered molecular sieves ($4 \AA, 2 \mathrm{~g}$) were added and the solution was cooled to $0^{\circ} \mathrm{C}$. Crystalline bromide $3(1.18 \mathrm{~g}, 1.79 \mathrm{mmol})$ was then added followed by silver triflate ($584 \mathrm{mg}, 2.27 \mathrm{mmol}$). The mixture was kept at $0^{\circ} \mathrm{C}$ in the dark and well stirred for 90 min , when TLC (CHCl_{3}-EtOA c, 9:1) indicated the complete disappearance of substrate 2. The mixture was filtered through Celite and subsequently washed with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 x)$ followed by aq. $\mathrm{NH}_{4} \mathrm{Cl}(2 x)$. D rying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtration gave a foamy solid, which was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3}{ }^{-}\right.$ EtOAc, 12:1) to afford 2-(4-benzyloxy-3-methoxybenzoyl)-2-(2-methoxyphenoxy)ethyl 2,3,4,6-tetra-0-benzoyl- β-d-glucopyranoside 7 as a powder ($1.205 \mathrm{~g}, 92.8 \%$) composed of two diastereomers; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 4.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.8$ and $11.6, \mathrm{H}-1)$, 4.35 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.9$ and $11.3, \mathrm{H}-1$), 4.39 (1 H , dd, J 4.9 and 11.3 , $\mathrm{H}-1), 4.40$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.3$ and $11.6, \mathrm{H}-1$) and $5.43-5.55(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Glc}-1$ and GIc-2); $\delta_{\mathrm{c}}(100 \mathrm{MHz}) 69.6$ and 70.6 (C-1), 80.1 and 82.2 (C-2), 101.3 and 101.9 (GIc-1), 194.4 and 194.8 (C-3). Compound 8, 2-(4-benzyloxy-3-methoxybenzoyl)-2-(2-methoxyphenoxy)ethyl 2,3,4-tri-O-benzoyl- β-d-xylopyranoside, was prepared in the same manner and was isolated as a powder: $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 4.20-4.28(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 4.31-4.40(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-1), 5.20-5.28(2 \mathrm{H}, \mathrm{m}, \mathrm{Xyl}-1)$ and $5.58-5.76(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2)$; $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 69.1$ and $69.6(\mathrm{C}-1), 80.4$ and $81.8(\mathrm{C}-2), 100.5$ and 101.3 (X yl-1) and 194.8 (C-3).

Z inc borohydride reductions

Epimeric ketones 7 and 8 were reduced with $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ in EtOAc as described previously ${ }^{12}$ to form products 9 -erythro and 13 -erythro, respectively. The diastereomers of 9 -erythro-3-benzyloxy-3-(4-benzyloxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propyl 2,3,4,6-tetra-0-benzoyl- β-d-glucopyranoside were isolated quantitatively as a syrup and the bulk of the material (threo:erythro, 8:92) was submitted directly to de-
acylation. An analytical sample was reserved and purified by preparative TLC (PLC) (CHCl_{3}-EtOAc, 4:1), which provided enrichment of the individual diastereomers of 9 -erythro as glasses; I somer I (faster by TLC): $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 3.86(1 \mathrm{H}$, dd, J 4.0 and 11.3, H-1), $4.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.9$ and 11.3, H-1), 4.47 (1 $\mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 4.6$ and $9.4, \mathrm{H}-2$), $4.81(1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 5.3, \mathrm{H}-3)$ and 5.20 (1 H , d, J 7.9, Glc-1); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 68.7$ (C-1), 72.9 (C-3), 84.0 (C-2) and 101.8 (GIc-1); I somer II (90% purity): $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$) $3.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9$ and $11.4, \mathrm{H}-1), 4.07(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0$ and 11.4, H-1), 4.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and GIc-5), $4.87(1 \mathrm{H}, \mathrm{br} \mathrm{t}$, J 4.6, H-3) and $5.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1, \mathrm{Glc}-1) ; \delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 69.5$ (C-1), 73.0 (C-3), 85.2 (C-2) and 102.1 (G IC-1). D iastereomers erythro-3-benzyloxy-3-(4-benzyloxy-3-methoxyphenyl)-2-(2methoxyphenoxy)propyl 2,3,4-tri-O-benzoyl- β-d-xylopyranoside 13-erythro: $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 3.93$ (1 H , dd, J 6.5 and $11.2, \mathrm{H}-1$), 4.21 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0$ and $10.6, \mathrm{H}-1$), 4.56 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.5, \mathrm{H}-2$), $4.92(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$ and $5.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.1, \mathrm{Xyl}-1)$; $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz})$ 68.2 and 68.7 (C-1), 72.8 and 72.9 (C-3), 83.9 and 84.9 (C-2) and 101.1 and 101.3 ($\mathrm{Xyl}-1$).

DIP chloride reductions

Reductions were essentially as described previously. ${ }^{13,14}$ Purification by silica gel chromatography (CHCl_{3} - $\mathrm{EtOAc}, 7: 1$) afforded the threo-isomers of compounds 9 and 13 in yields which ranged from 82-88\%. Individual isomers could not be readily separated. Diastereomers 9-threo: $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 3.59$ (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 6.0$ and 11.1, H-1), 3.80 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.6$ and $11.6, \mathrm{H}-1$), $3.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.9$ and $11.5, \mathrm{H}-1), 4.2(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.1$ and 11.1 , H-1), 4.31-4.48 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and GIc-5), 4.84-4.90 ($2 \mathrm{H}, \mathrm{m}$, H-3), 5.23 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9, \mathrm{GIc}-1$) and 5.32 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9, \mathrm{GIc}-1$); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 69.4$ and $68.6(\mathrm{C}-1), 72.9$ and 73.2 (C-3), 85.7 and 85.8 (C-2) and 101.7 and 101.9 (G Ic-1); D iastereomers 13-threo (separation into individual isomers was not attempted): δ_{H} (200 M Hz) 3.51 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.8$ and 11.0, H-1), 4.17 ($1 \mathrm{H}, \mathrm{dd}$, J 3.1 and 11.0, H-1), 4.32-4.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 4.87-4.98 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3)$ and $5.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{X} \mathrm{yl}-1)$; $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 68.4$ and 68.7 ($\mathrm{C}-1$), 72.5 and 73.1 (C-3), 85.6 and 85.7 (C-2) and 100.9 and 101.6 (X yl-1).

Deprotection

A standard Zemplen deacetylation was performed with a catalytic amount of NaOM ein MeOH . M ixtures were typically left overnight and subsequently quenched with ion-exchange resin (A mberlite 120A, H^{+}form). Processing and silica gel chromatography afforded the deacylated materials, which were submitted directly to debenzylation via catalytic hydrogenation. ${ }^{10}$ Purification by silica gel chromatography (CHCl_{3} $\mathrm{M} \mathrm{eOH}, 6: 1$) afforded diastereomeric mixtures of compounds 11 and $\mathbf{1 5}$ (overall yields $80-90 \%$). The materials were not readily separable by flash chromatography and were characterized as mixtures. NMR spectroscopic assignment to individual isomers was not attempted. Diastereomers erythro-3-(4-benzyl-oxy-3-methoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propyl β-d-glucopyranoside 11: $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 3.69(1 \mathrm{H}$, dd, J 5.0 and 11.0, H-1), $3.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.4$ and 11.2, $\mathrm{H}-1), 4.04(1 \mathrm{H}$, dd, J 3.4 and $11.2, \mathrm{H}-1$), 4.10 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0$ and $11.0, \mathrm{H}-1$), 4.30 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8, \mathrm{G} \mathrm{Ic}-1$), 4.34 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6$, G Ic-1), 4.51-4.55 $(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0,3-\mathrm{H})$ and $4.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0$, $\mathrm{H}-3) ; \delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 68.8$ and $69.6(\mathrm{C}-1), 73.28$ and $73.30(\mathrm{C}-3)$, 83.8 and 84.6 ($\mathrm{C}-2$) and 104.3 and 104.7 (G IC-1); D iastereomers 11-threo: $\delta_{\mathrm{H}}(100 \mathrm{M} \mathrm{Hz}) 3.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.6$ and 11.1, $\mathrm{H}-1), 3.75-$ $3.86\left(11 \mathrm{H}, \mathrm{m}, \mathrm{H}-1\right.$ and $\left.\mathrm{OCH}_{3}\right), 4.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0$ and 11.1 , H-1), 4.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0, \mathrm{GIC}-1$), 4.35 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0, \mathrm{GIc}-1$), 4.34-4.46 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$) and $4.94(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$; $\delta_{\mathrm{c}} 68.8$ and $69.1(\mathrm{C}-1), 73.24$ and 73.28 ($\mathrm{C}-3$), 85.2 and $85.6(\mathrm{C}-2)$ and 104.3 and 104.5 (GIC-1). Diastereomers erythro-3-(4-benzyloxy-3-methoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propyl β-dxylopyranoside 15: $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 3.64(1 \mathrm{H}$, dd, J 4.3 and 10.9, H-1), 4.06 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.2$ and 10.9, H-1), 4.26 (1 H , dd, J 7.0 and $10.1, \mathrm{X} \mathrm{yl}-1), 4.46-4.56(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2)$ and $4.92(1 \mathrm{H}, \mathrm{d}$,

J $5.5, \mathrm{H}-3$); $\delta_{\mathrm{C}}(50 \mathrm{M} \mathrm{Hz}) 68.3$ and $69.0(\mathrm{C}-1), 73.2$ and 73.3 (C3), 83.9 and 84.4 (C-2), 104.3 and 104.8 (X yl-1). D iastereomers 15-threo: $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 3.36-3.60(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{Xyl}-4), 4.04$ (1 H, dd, J 4.0 and 10.9, H-1), 4.22 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.1$ and $14.6, \mathrm{X}$ yl1), 4.38-4.50 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 4.96 (d, J 5.6, H-3) and 4.98 ($1 \mathrm{H}, \mathrm{d}$, J 4.8, $\mathrm{H}-3$); $\delta_{\mathrm{c}} 68.4$ and 68.6 (C-1), 73.2 and 73.4 (C-3), 85.2 and 85.6 (C-2) and 104.5 and 104.6 ($\mathrm{Xyl}-1$).

Per-acetates

A cetylations were performed with acetic anhydride and 4(dimethylamino)pyridine in methylene dichloride After work-up the samples were purified by PLC using CHCl_{3} $\mathrm{EtOAC}(3: 1)$ as the solvent. Y ields after TLC were $90-94 \%$. The individual isomers of 3-acetoxy-3-(4-benzyloxy-3-methoxy)-2-(2-methoxyphenoxy)propyl 2,3,4,6-tetra-0-acetyl- β-d-glucopyranoside 12 were obtained in relatively high purity (contaminated only with the other diastereomer) based on NM R spectroscopy. 12t ${ }_{1}$ ($>97 \%$); $[a]_{\mathrm{D}}-10.9$ (c 1.44, acetone); $\delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 1.92,1.96,1.97,1.98,2.11$ and $2.21\left(\mathrm{COCH}_{3}\right), 3.66$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.4$ and $12.0, \mathrm{H}-1), 3.83$ and $3.84\left(\mathrm{OCH}_{3}\right), 3.88$ (1 H , ddd, J 2.4, 5.2 and 10.1, GIc-5), 3.92 ($1 \mathrm{H}, \mathrm{dd}$, J 3.8 and 12.0, H-1), 4.01 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and 12.3 , GIC-6), 4.20 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.2$ and $12.3, \mathrm{Glc}-6$), $4.66(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 3.6$ and 7.1, H-2), 4.95 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5, \mathrm{Glc}-1$), 4.99 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.5, \mathrm{Glc}-2$), 5.01 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.8$, Glc-4), 5.28 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.3$, GIc-3), 6.09 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0, \mathrm{H}-3$), 6.87 (1 H , ddd, J 2.0, 7.1 and 7.9), 6.96 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 1.5$ and 7.7), $7.00(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 2.0$ and 8.1), $7.01-7.05$ $(3 \mathrm{H}, \mathrm{m})$ and $7.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{c}}(100 \mathrm{MHz}) 20.4,20.5$, 20.5, 20.6, 20.7 and $21.0\left(\mathrm{COCH}_{3}\right), 56.3$ and $56.3\left(\mathrm{OCH}_{3}\right), 62.7$ (Glc-6), 68.1 (C-1), 69.4 (GIc-4), 72.1 (GIc-2), 72.4 (G Ic-5), 73.2 ($\mathrm{Glc}-3$), 75.4 (C-3), 82.6 (C-2), 101.7 (G|c-1), 113.0, 113.8, 119.1, 120.1, 121.7, 123.4, 123.6, 137.0, 140.7, 149.0, 151.7 and $152.0(\mathrm{Ar})$ and $168.9,169.9,170.0,170.2$ and 170.6 (COCH_{3}).

Isomer 12t $\mathbf{2}_{2}$: 91\% by NMR; [a] ${ }_{\mathrm{D}}$-37.6 (c 1.19, acetone); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.74,1.91,1.97,1.99,2.00$ and $2.22\left(\mathrm{COCH}_{3}\right)$, 3.58 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.7$ and $11.29, \mathrm{H}-1$), 3.82 and $3.83(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.90(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2.4,5.0$ and $10.1, \mathrm{Glc}-5), 4.03(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J} 3.2$ and $11.3, \mathrm{H}-1$), $4.07(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and $12.3, \mathrm{Glc}-6)$, $4.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0$ and 12.3 , Glc-6), $4.72(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 3.2,6.6, \mathrm{H}-$ 2), 4.81 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1, \mathrm{Glc}-1$), 4.91 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.1$ and 9.8 , Glc2), 5.01 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.8, \mathrm{GIc}-4$), 5.20 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5, \mathrm{Glc}-3$), 6.05 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.1, \mathrm{H}-3$), $6.83(1 \mathrm{H}$, ddd, J 1.8, 7.3 and 7.9), $6.90-$ $7.04(5 \mathrm{H}, \mathrm{m})$ and $7.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 20.4,20.5$, $20.5,20.5,20.6$ and $20.9\left(\mathrm{COCH}_{3}\right), 56.1$ and $56.3\left(\mathrm{OCH}_{3}\right), 62.6$ (G Ic-6), 69.3 (C-1), 69.4 (GIc-4), 72.0 (GIc-2), 72.4 (GIc-5), 73.4 (Glc-3), 74.8 (C-3), 81.8 (C-2), 101.5 (G|c-1), 112.5, $113.4,118.2,120.1,121.5,123.1,123.5,136.8,140.8,149.5$, 151.4 and 152.2 (Ar) and $168.9,169.6,169.9,170.0,170.2$ and $170.7\left(\mathrm{COCH}_{3}\right)\left(\mathrm{HRMS}: \mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{17}\right.$ requires $\mathrm{M}, 734.2422$. Found: ${ }^{+}$, 734.2416).

Isomer 12e e_{1} : 87% by ${ }^{1} \mathrm{H}$ N M R spectroscopy; $[a]_{\mathrm{D}}-16.1$ (c 1.28, acetone); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$) 1.94, 1.98, 2.00, 2.04 and 2.22 $\left(\mathrm{COCH}_{3}\right), 3.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.9$ and 11.1, $\mathrm{H}-1), 3.80$ and 3.83 $\left(\mathrm{OCH}_{3}\right), 3.91(1 \mathrm{H}$, ddd, J 2.5, 5.1 and 10.0, Glc-5), 4.06 (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 4.7$ and 11.1, $\mathrm{H}-1$), $4.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.5$ and 12.3 , GIc-6), $4.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.1$ and 12.3 , GIc-6), $4.77(1 \mathrm{H}, \mathrm{dt}$, J 4.9 and $5.8, \mathrm{H}-2$), $4.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0, \mathrm{Glc}-1), 4.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 8.0 and 9.6, Glc-2), 5.02 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.5$ and 10.1, Glc-4), 5.26 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5, \mathrm{GIc}-3$), $6.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0, \mathrm{H}-3$), $6.85(1 \mathrm{H}$, ddd, J 2.2, 6.8 and $7.9, \mathrm{~B}-5$), 6.92-7.03 ($3 \mathrm{H}, \mathrm{m}, \mathrm{B}-3,-4$ and -6), 7.03 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1, \mathrm{~A}-5$), 7.09 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 0.4,1.8$ and 8.1, A -6) and $7.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.7, \mathrm{~A}-2)$; $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 20.4,20.4,20.5$, 20.5, 20.7 and $20.9\left(\mathrm{COCH}_{3}\right), 56.2$ and $56.2\left(\mathrm{OCH}_{3}\right), 62.6$ (G Ic-6), 68.1 (C-1), 69.3 (G Ic-4), 72.1 (G Ic-2), 72.4 (GIc-5), 73.4 (GIc-3), 74.7 (C-3), 80.7 (C-2), 101.4 (GIc-1), 113.4, 113.7, 118.9, 121.2, 121.7, 123.1, 123.6, 136.5, 140.7, 148.5, 151.7 and 151.9 (Ar) and 168.9, 169.7, 169.8, 169.9, 170.3 and 170.6 (COCH_{3}).

Isomer $12 \mathrm{e}_{2}: 85.5 \%$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy; $[a]_{\mathrm{D}}-21.6$ (c
1.16, acetone); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.81,1.92,1.98,1.99,2.00$ and $2.22\left(\mathrm{~s}, \mathrm{COCH}_{3}\right), 3.80$ and $3.82\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.77-3.83(\mathrm{H}-1), 3.93$ ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2.4,5.0$ and 10.0, Glc-5), 3.97 (1 H , dd, J 4.3 and $11.3, \mathrm{H}-3$), 4.09 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and $12.3, \mathrm{Glc}-6$), $4.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 5.0 and 12.3, GIc-6), 4.78 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 4.5$ and $6.5, \mathrm{H}-2$), 4.85 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 8.1, \mathrm{GlC-1}$), 4.93 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.1$ and $9.6, \mathrm{Glc}-2$), 5.02 (1 H, t, J 9.7, GIc-4), 5.22 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5$, GIc-3), 5.96 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 4.7, H-3), 6.84 (1 H, ddd, J 2.4, 6.6 and 7.9), 6.92-7.08 (5 H , m) and $7.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.8)$; $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 20.4,20.4,20.4$, 20.5, 20.6 and $20.8\left(\mathrm{COCH}_{3}\right), 56.1$ and $56.2\left(\mathrm{OCH}_{3}\right), 62.6$ (GIc-6), 68.7 (C-1), 69.3 (G Ic-4), 72.0 (Glc-2), 72.4 (G lc-5), 73.4 (Glc-3), 74.9 (C-3), 81.0 (C-2), 101.4 (Glc-1), 113.1, 113.5, 118.9, 120.8, 121.6, 123.2, 123.4, 136.3, 140.7, 148.9, 151.7 and 151.9 (Ar) and 168.9, 169.8, 169.9, 170.0, 170.2 and $170.7\left(\mathrm{COCH}_{3}\right)\left(\mathrm{HRMS}: \mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{17}\right.$ requires $\mathrm{M}, 734.2422$. Found: $\mathrm{M}^{+}, 734.2433$).

Purification of the diastereomers of 3 -acetoxy-3-(4-benzyl-oxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propyl 2,3,4-tri0 -acetyl- β-d-xylopyranoside 16 was not attempted. 16erythro: $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.98,1.99,2.02,2.07$ and $2.23\left(\mathrm{COCH}_{3}\right)$, $3.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2$ and $11.72, \mathrm{X}$ yl-5), $3.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.46$ and 10.93, H-1), 3.78, 3.80, 3.82 and 3.83 (s, OCH3), $3.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 4.27 and 11.10, H-1), 4.05 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.25$ and 11.66, $\mathrm{Xyl}-5$), 4.7-4.8 (2 H, m, Xyl-1, H-2), 4.8-4.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Xyl}-2, \mathrm{Xyl}-4$), 5.17 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.8, \mathrm{X} \mathrm{yl}-3$), $5.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.21$ and $4.9, \mathrm{H}-3$), 6.86-6.94 ($1 \mathrm{H}, \mathrm{m}$), 6.96-7.16 ($5 \mathrm{H}, \mathrm{m}$) and $7.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.47$); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 20.5,20.6,20.7,20.8$ and $20.9\left(\mathrm{COCH}_{3}\right), 56.2$ and $56.2\left(\mathrm{OCH}_{3}\right), 62.5$ and $62.6(\mathrm{Xyl}-5), 67.7$ and $68.3(\mathrm{C}-1), 69.6$ and 69.7 ($\mathrm{Xyl}-4$), 71.6 ($\mathrm{Xyl}-2$), 72.1 and 72.2 ($\mathrm{Xyl}-3$), 74.7 and 74.8 (C-3), 80.78 and 81.0 (C-2), 101.5 and 101.6 (X yl-1), 113.0, 113.0, 113.3, 113.5, 113.7, 118.9, 119.0, 120.8, 121.1, 121.6, 121.6, 123.15, 123.4, 123.6, 129.0, 129.7, 136.3, 136.6, 140.7, 148.5, 148.8, 151.7, 151.8 and 151.9 (Ar) and 168.9, 169.8, 169.9, 170.1 and $170.2\left(\mathrm{COCH}_{3}\right)\left(\mathrm{HRMS}: \mathrm{C}_{35} \mathrm{H}_{38} \mathrm{O}_{15}\right.$ requires M, 662.2211. Found: $\left.M^{+}, 662.2204\right)$.
16-threo: $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.98,1.99,2.00,2.12$ and 2.23 $\left(\mathrm{COCH}_{3}\right), 3.40-3.56(1 \mathrm{H}, \mathrm{m}, \mathrm{Xyl}-5), 3.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.6$ and 11.8, H-1), 3.82 and $3.83\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.95-4.13(2 \mathrm{H}, \mathrm{m}$, H-1, X yl-5), 4.60-4.78 (2 H , m, H-2, X yl-1), 4.80-5.28 (3 H , m, X yl-2, X yl-3, X yl-4), 6.08 (d, J 6.3, H-3), 6.11 (1 H, d, J 7.3, H-3) and 6.78-7.35 (7 H); $\delta_{\mathrm{c}}(50 \mathrm{MHz}) 20.4,20.6,20.9$ and 21.3 $\left(\mathrm{COCH}_{3}\right), 56.2\left(\mathrm{OCH}_{3}\right), 62.4$ and $62.6(\mathrm{Xyl}-5), 67.8$ and 68.8 (C-1), 69.5 and 69.7 ($\mathrm{Xyl}-4$), 71.3 and 71.7 ($\mathrm{Xyl}-2$), 72.0 and 72.2 ($\mathrm{X} \mathrm{yl}-3$), 74.9 and 75.5 (C-3), 81.8 and 82.6 (C-2), 101.4 and 101.9 (X yl-1), 112.5, 112.9, 113.4, 113.7, 118.3, 119.2, 120.1, 121.6, 123.1, 123.5, 136.8, 137.0, 140.7, 149.4 and 152.1 (A r) and 168.8, 170.0 and $170.2\left(\mathrm{COCH}_{3}\right)\left(\mathrm{HRMS}: \mathrm{C}_{35} \mathrm{H}_{38} \mathrm{O}_{15}\right.$ requires $\mathrm{M}, 662.2211$. Found: $\mathrm{M}^{+}, 662.2213$).

Acknowledgements

The researchers at Virginia Tech are grateful for the financial support of the N ational Research Initiative Competitive G rants Program (Improved Utilization of Wood and Wood Fiber Grant \#930-2190), and to the Department of Chemistry of Virginia Tech for use of their NMR spectrometer and optical polarimeter.

R eferences

1 D. Fengel and G. Wegener, Wood: C hemistry, U Itrastructure, Reactions, Walter de G ruyter, Berlin, 1984.
2 D. H. N orthcote, A nnu. Rev. P lant P hysiol., 1972, 23, 113.
3 T. Watanabe, Wood Res., 1989, 76, 59.
4 T. Imamura, T. Watanabe, M. Kuwahara and T. Koshijima, P hytochemistry, 1994, 37, 1165.
5 J. F. D. D ean and K .-E. L. Eriksson, H olzforschung, 1992, 46, 135.
6 J. R alph, R. D. H atfield, S. Quideau, R. F. H elm, J. H. G rabber and H.-J. G. Jung, J. A m. C hem. Soc., 1994, 116, 9448.

7 J. Harmatha, H. Lübke, I. Rybárik and M. M ahdalík, Collect. C zech. C hem. Commun., 1978, 43, 774.

8 I. K ilpeläinen, J. Sipilä, G. Brunow, K . L undquist and R . M . Ede, J. A gric. Food C hem., 1994, 42, 2790.

9 P. K arhunen, P. Rummakko, J. Sipilä and G. Brunow, Tetrahedron L ett., 1995, 36, 169.
10 R. F. Helm and J. R alph, J. A gric. Food Chem., 1992, 40, 2167 (and references cited therein).
11 H. G. F letcher, M ethods C arbohydr. C hem., 1963, 2, 226.
12 R. F. Helm and J. R alph, J. W ood C hem. Technol., 1993, 13, 593.
13 R. F. Helm and K. Li, H olzforschung, 1995, 49, 533.
14 H. C. Brown, J. Chandrasekharan and P. V. Ramachandran, J. A m. Chem. Soc., 1988, 110, 1539.

15 B. K. Banik, M. S. M anhas and A. K. Bose, J. Org. Chem., 1994, 59, 4714.

16 T. Tokimatsu, T. U mezawa and M. Shimada, H olzforschung, 1996, 50, 156.
17 L. L. Landucci, S. A. G eddes and T. K. K irk, H olzforschung, 1981, 35, 66.

Paper 6/03786K
Received 31st M ay 1996
A ccepted 10th September 1996

